File:
Math.em
Description:
Mathematic functions for your enjoyment
Last Modified: 1/22/2003
Abs(x) |
Parameters: |
Name |
Type |
x |
Real or Integer |
Explanation |
Computes the absolute value of x |
Return values |
Real number |
Errors |
"Invalid parameter type" |
ACos(x) |
Parameters: |
Name |
Type |
x |
Real, in radians |
Explanation |
Computes the arccosine of x |
Return values |
Real number in radians |
Errors |
"Invalid parameter type" |
ASin(x) |
Parameters: |
Name |
Type |
x |
Real, in radians |
Explanation |
Computes the arcsine of x |
Return values |
Real number in radians |
Errors |
"Invalid parameter type" |
ATan(x) |
Parameters: |
Name |
Type |
x |
Real, in radians |
Explanation |
Computes the arctangent of x |
Return values |
Real number in radians |
Errors |
"Invalid parameter type" |
Ceil(x) |
Parameters: |
Name |
Type |
x |
Real |
Explanation |
Computes the ceiling of x |
Return values |
Real that is smallest integer >= x |
Errors |
"Invalid parameter type" |
ConstE() |
Explanation |
Returns an approximation of the trancendental number E |
e, is an irrational NUMBER occurring widely in mathematics
and science, approximately equal to the value 2.71828; it is the base of
natural, or Naperian, LOGARITHMS. Like pi, e is transcendental, i.e., not
a ROOT of any algebraic equation. It is defined as the LIMIT of the
expression (1 + 1/n)^n as n becomes infinitely large. Expressions of the
form e^(x), known as the exponential function, occur in applications
ranging from statistics to nuclear physics |
Return values |
Real number |
ConstPi() |
Explanation |
Returns an approximation of the trancendental number
Pi |
Pi is a numerical constant that represents the ratio of a
circle's circumference to its diameter on a flat plane surface. The value
is the same regardless of the size of the circle. The decimal expansion of
pi is a nonterminating, nonrepeating sequence of digits. Pi can be
expressed through the Fourier series pi = 4 - (4/3) + (4/5) - (4/7) +
(4/9) - ... |
Return values |
Real number (3.14159....) |
Cos(x) |
Parameters: |
Name |
Type |
x |
Real, in radians |
Explanation |
Computes the cosine of x |
Return values |
Real number |
Errors |
"Invalid parameter type" |
DegToRad( degrees ) |
Parameters: |
Name |
Type |
degrees |
Real, in degrees |
Explanation |
Converts the degrees parameter to radians |
Return values |
Real number in radians |
Errors |
"Invalid parameter type" |
Floor(x) |
Parameters: |
Name |
Type |
x |
Real |
Explanation |
Computes the floor of x |
Return values |
RReal that is largest integer <= x |
Errors |
"Invalid parameter type" |
FormatRealToString( value, precision
) |
Parameters: |
Name |
Type |
value |
Real |
precision |
Integer |
Explanation |
Who knows if this even works at all |
Return values |
String rep of the real number |
Errors |
"Invalid parameter type" |
Log10(x) |
Parameters: |
Name |
Type |
x |
Real |
Explanation |
Computes log(base 10) of x |
Return values |
Real number |
Errors |
"Invalid parameter type" |
LogE(x) |
Parameters: |
Name |
Type |
x |
Real |
Explanation |
Computes the natural log of x |
Return values |
Real number |
Errors |
"Invalid parameter type" |
RadToDeg( radians ) |
Parameters: |
Name |
Type |
radians |
Real, in radians |
Explanation |
Converts the radian parameter to degrees |
Return values |
Real number in degrees |
Errors |
"Invalid parameter type" |
Sin(x) |
Parameters: |
Name |
Type |
x |
Real, in radians |
Explanation |
Computes the sine of x |
Return values |
Real number |
Errors |
"Invalid parameter type" |
Sqrt(x) |
Parameters: |
Name |
Type |
x |
Real |
Explanation |
Computes the square root of x |
Return values |
Real number |
Errors |
"Invalid parameter type" |
Tan(x) |
Parameters: |
Name |
Type |
x |
Real, in radians |
Explanation |
Computes the tangent of x |
Return values |
Real number |
Errors |
"Invalid parameter type" |
If you know if
any information is incorrect on these pages, mail your corrections to
racalac@burdell.org
Copyright ©2003
David Carpman, all rights reserved. DO NOT REPRODUCE, MIRROR, ALTER, SPINDLE,
MUTILATE, OR SIT ON.